

名大院工 荒巻光利

日本物理学会 2012年秋季大会 横浜国立大学(9月20日)

光の専門家でなくても扱える範囲の技術、

大学の一研究室(一研究者)の予算規模で始められる技術を導入して、

新しいプラズマ物理の研究を切り拓きたい。

半導体レーザーの特徴

◆欠点

- 単体動作では線幅が広く不安定 ~数+MHz
- 入手可能な波長が限られている (中心波長に対して数ナノメートルなら調整可)

外部共振器型半導体レーザー(ECDL)の原理

Fig. 1. Schematics of the mechanical setup of the grating-stabilized diode laser system.

L. Ricci, et al., Optics Comm. 117, 541 (1995)

コリメートレンズ

アルゴン準安定原子測定の場合

HL6738MG

Visible High Power Laser Diode

HITACHI

ADE-208-601C (Z) 4th Edition Dec. 2000

Features

- High output power : 35 mW (CW)
- Small package •
- Low astigmatism •
- Visible light output : $\lambda p = 680$ to 695 nm
 - : \$ 5.6 mm
 - $: 6 \,\mu m \,\text{Typ} (P_0 = 5 \,\text{mW})$

アルゴン準安定原子のレーザー吸収分光例

ICP mode RF power 1 kW Pressure 0.1 Pa

FWHM 1.1 GHz Temperature 540 K

@Ruhr Uni. Germany 2009年

光科学の導入によるプラズマ物理の新領域開拓

光科学の発展により高度に制御されたレーザーが利用できるよう になってきた。

レーザー制御技術の発展

狭帯域化 : ~1 MHz
 (レーザー周波数の1億分の1)

- 高安定化: ~10 kHz/min (レーザー周波数の100億分の1)
- 周波数可変 : 数GHz

●高精度周波数較正 : ~1 MHz
 (相対精度: ~1億分の1)

狭帯域レーザーを用いた速度分布関数の制御と測定

光とプラズマの多自由度相互作用の利用
 光渦を用いた新しいプラズマ分光法

Coulomb Coupling Constant

- q Charge
- \mathcal{E}_{o} permittivity of vacuum
- $k_{\rm B}$ Boltzmann's constant
- T Temperature
- a Wigner-Seitz radius = $(4\pi n/3)^{-1/3}$
- *n* number density of ions

$\Gamma << 1$ Weakly coupled plasma

Process Plasma $n \cong 10^{11} \text{ cm}^{-3}, T \cong 10^4 \text{ K} \rightarrow \Gamma = 10^{-3}$ Fusion Plasma $n \cong 10^{16} \text{ cm}^{-3}, T \cong 10^8 \text{ K} \rightarrow \Gamma = 10^{-5}$ Solar Corona $n \cong 10^6 \text{ cm}^{-3}, T \cong 10^6 \text{ K} \rightarrow \Gamma = 10^{-7}$

$$\begin{split} & \Gamma \geq 1 \quad \text{Strongly coupled plasma} \\ & \text{Dusty Plasma} \quad n \cong 10^6 \, \text{cm}^{-3}, T \cong 10^3 \, \text{K}, q = 10^3 \times e \rightarrow \Gamma = 200 \\ & \text{Laser Cooled Plasma} \quad n \cong 10^8 \, \text{cm}^{-3}, T \cong 10^{-3} \sim 10^3 \, \text{K} \rightarrow \Gamma = 10^3 \sim 10^{-3} \end{split}$$

弱結合プラズマ中のクーロン遮蔽

強結合プラズマ中のクーロン遮蔽

Different screening mechanism results in different Coulomb collision frequency

S. Ichimaru "Statistical Plasma Phys Volume I" 13/43

イオン球モデルを用いた <u>強結合プラズマ中の素過程の</u>理論研究

◆星の中の核反応確立

- > Daniel H. E. Dubin, Phys. Rev. Lett. 94, 025002 (2005)
- > H.E. Dewitt, H.C. Graboske, M.S. Cooper, Astrophysical Journal, 181, 439 (1973).

◆電子衝突励起

B.L. Whitten, N.F. Lane, J.C. Weisheit, Phys. Rev. A, 29, 945 (1984).

◆荷電粒子の輸送

> D.B. Boercker, F.J. Rogers, H.E. Dewitt, Phys. Rev. A, 25, 1623 (1982).

▶制動放射

Y.D. Jung, Phys Plasmas, 3, 1741 (1996).

Where is the border of elementary process?

広い範囲で「が可変であることが必要

レーザー冷却技術を用いることで、気相から固相までプラズマの 状態を自由に制御し、実験を行うことが可能になる

Linear RF Ion Trap

V _{RF}	$120\sim 200~V$	Pressure	1×10 ⁻¹⁰ Torr
Ω	2π x 2.8 MHz	Confinement	10s - days
V _{END}	5 ~ 60 V	lon species	⁴⁰ Ca+

レーザー冷却および非破壊測定系

冷却プラズマの非破壊測定

Different screening mechanism results in different Coulomb collision frequency

S. Ichimaru "Statistical Plasma Phys Volume I" 20/43

クーロン衝突周波数の温度 依存性

• 強結合への遷移領域ですでにデバイ遮蔽は成り立たない.

Where is the border of elementary process?

光による速度分布の制御と測定のまとめ

- イオン温度を制御し、強結合と弱結合の中間領域のプラズマを生成・診断した。
 0.1 < 「 < 10, 20 > T > 0.2
- クーロン相互作用が関連する素過程は「=0.1で既に強結 合プラズマとして扱う必要がある。

今後の展望

- 弱結合領域側の測定領域を拡大
- スペクトルの形状から情報を得る方法は「=10程度が限界。
 密度揺動測定等、他の測定法との組み合わせが必要。

狭帯域レーザーを用いた速度分布関数の制御と測定

光とプラズマの多自由度相互作用の利用
 光渦を用いた新しいプラズマ分光法

プラズマー中性粒子相互作用による構造形成

反EXB渦

中性粒子の枯渇

電離圏プラズマとの相互作用

NIFS HYPER-I device

NASA Goddard Space Flight Center News (2006)

◆実験室および電離圏プラズマにおいて、プラズマと中性粒子の相互 作用が重要な働きをする構造形成が報告されている。

◆中性粒子の運動を高精度に観測する技術を確立し、これらの構造 形成における中性粒子の役割を明らかにする。

プラズマ中の遅い中性粒子の流れ測定

10m/sの中性粒子流れのドップラーシフト(@700nm)計測は1億分の1の計 測精度が必要

ラムディップを用いた精密計測

HYPER-I装置

LIF光源

Plasma production: Electron cyclotron resonance Size: ϕ 30cm × 200cm Microwave : 2.45GHz Input power: 250W ~5kW Magnetic field: ~ 0.11T Gas presssure: 1×10⁻² Torr (Ar)

レーザー光源:外部共振器型半導体レー ザー (ECDL) 出力:16 mW 波長:696.73 nm

◆レーザー周波数較正の誤差は約5時間にわたり3MHz(2 m/s)以下を保つこ とができる。これは8桁の精度で光の周波を較正したことを意味する。

• <u>M. Aramaki</u>, et al., Rev. Sci. Instrum. 80, pp. 053505-1 - 053505-4, 2009.

ドップラーシフトの観測

プラズマ中心から±4cmでのドップラーシフト計測(レーザー入射方向は-X方向) X=+4cm高周波側にシフト → -X方向への流れ X=-4cm 低周波側にシフト → +X方向への流れ

中性粒子の流れと相互作用する渦

イオンの流れ場(プローブ) 中性粒子の流れ場(LIF) 6 6 nθ iθ **ν**_{nθ} < 0 $-\boldsymbol{V}_{i\theta} < 0$ 4 2 2 y (cm) y (cm) 0 Ω -2 -2 -4 -4 100m/s 1km/s -6 -6 -6 -2 -4 0 2 4 6 -6 -2 0 2 4 6 -4 x (cm) x (cm)

中性粒子の内向きの流れが反E×B渦を駆動している.

光によるドップラーシフトの精密測定のまとめ

- ラムディップを周波数基準にした高精度レーザー誘起蛍光計測系を開発した
- プラズマ中の中性粒子の流速を2m/sの世界最高精度で観測し、中性 粒子の2次元流れ場を得た

今後の展望

- 基底状態の測定
 - フェムト秒レーザーによる多光子励起 20pFA-3「フェムト秒レーザー光とプラズマの相互作用」 森淳一郎,他
 - 周波数コムによる共鳴励起 nature 482, 68 (2012) Arman Cingöz et al.

狭帯域レーザーを用いた速度分布関数の制御と測定

●光によるイオン速度分布の制御と測定 ▶ 強結合プラズマ生成とクーロン遮蔽の変化

●光によるドップラーシフトの精密測定 > プラズマ中の中性粒子の遅い流れ測定

2種類の電磁波伝搬モード

 $\nabla^2 u + k^2 u = 0$ (Helmholtz波動方程式)

光渦は軌道角運動量をもつ

L. Allen, et al., Phys. Rev. A 45, 8185 (1992)

PHYSICAL REVIEW A

VOLUME 45, NUMBER 11

1 JUNE 1992

Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands (Received 6 January 1992)

Laser light with a Laguerre-Gaussian amplitude distribution is found to have a well-defined orbital angular momentum. An astigmatic optical system may be used to transform a high-order Laguerre-Gaussian mode into a high-order Hermite-Gaussian mode reversibly. An experiment is proposed to measure the mechanical torque induced by the transfer of orbital angular momentum associated with such a transformation.

PACS number(s): 42.50.Vk

光渦による原子の励起

L. Allen, et al., Opt. Comm. 112, 141 (1994)

15 November 1994

OPTICS COMMUNICATIONS

Optics Communications 112 (1994) 141-144

Azimuthal Doppler shift in light beams with orbital angular momentum

L. Allen^a, M. Babiker^a, W.L. Power^b

^a Department of Physics, University of Essex, Colchester CO4 3SQ, UK ^b Optics Section, Blackett Laboratory, Imperial College, London SW7 2BZ, UK

Received 20 June 1994; revised version received 15 August 1994

Abstract

We show that an atom moving in a light beam with orbital angular momentum experiences an azimuthal shift in the resonant frequency in addition to the usual axial Doppler and recoil shifts. For a Laguerre-Gaussian beam characterised by an orbital angular momentum quantum number l, the shift is lV_{ϕ}/r where r is the radial atomic position and V_{ϕ} the azimuthal component of velocity. The predicted shift could play a significant role in interactions between atoms and standing light fields in cooling experiments as well as in ion traps.

光渦中の原子が感じるドップラー効果

光渦を用いた分光法は3つの並進自由度に対して感度がある

L. Allen, et al., Opt. Comm. 112 141 (1994)

光渦のプラズマ研究への応用(計画)

多自由度相互作用の利用

- ➢ 渦の直接測定 20pFA-2「新規プラズマ分光法のための波長可変光渦レーザーの 開発」 荒巻光利, 他
- レーザー冷却 加速器中のビームの横方向冷却

位相特異点の利用

- ▶ 高分解能顕微レーザー分光による密度揺動計測
- 螺旋状の等位相面の利用
 トムソン散乱計測の測定自由度の拡張

まとめ

- 光科学の発展により、速度分布関数を精密に直接制御・観測したプラズマ物理研究が可能になってきている
- ・光によるイオン速度分布の制御と測定
 ▶強結合プラズマ生成とスペクトルの精密測定
 →プラズマ中のクーロン遮蔽のメカニズム
- ・ 光によるドップラーシフトの精密測定
 トプラズマ中の中性粒子の遅い流れ測定
 →プラズマと中性原子の相互作用による構造形成
- 光とプラズマの多自由度相互作用の利用
 制御・測定可能な自由度の拡張

名古屋大学	亀山悟史	北海道大学	戸田泰則
阪大レーザー研 九州大学	松岡圭祐	核融合研	吉村信次
	高木沙織		森崎友宏
	庄司多津男	NICT	早坂和弘
	河野明廣	Ruhr University	Uwe Czarnetzki
	坂和洋一 森淳一郎		Yusuf Celik
	江藤 修三		Isanko V. Isankov
	荻原 公平		Beilei Du
	寺坂健一郎		Dirk Luggenh ö lscher
	田中雅慶		

