#### 日本物理学会 2012秋季大会(横浜国立大学) 平成24年9月20日(火)10:45~11:15

コンプレックスプラズマ における微粒子構造形成

### 横浜国立大学 <sup>工学研究院</sup>

石原修

#### コンプレックスプラズマにおける微粒子構造形成

- 1 歴史的な背景:宇宙塵,ダスト,微粒子
- 2 コンプレックスプラズマの特徴 実験室におけるコンプレックスプラズマ ダストとプラズマの相互作用
- 3 微粒子によるバウショック形成(実験)
- 4 鎖形成、螺旋構造(シミュレーション)
- 5 微粒子と電荷の相互作用, 分極効果(理論)
- 6 1次元、2次元格子と集団運動(理論) 結び

END

#### Dawn of the Physics of Complex Plasmas







#### Irving Langmuir

Science 60, 392 (1924) Sputtered Tungsten "globules" from cathode entered the plasma

#### Hannes Olof Gösta Alfvén

On the Origin of the Solar System (1954)

The ionized gas condensed as <u>small grains</u> (or droplets) which moved in Kepler ellipses, and the planets were formed by the agglomeration of these grains.

#### Lyman Spitzer, Jr. Diffuse Matter in Space (1968).

The photo-electric effect tends to make the grains positive, but the capture of swift electrons which hit the grains tend to give them a negative charge.

#### **Dawn of the Physics of Complex Plasmas**

## Saturn Ring Voyager Spacecraft 1981

Cassini spacecraft Nov. 2, 2008



#### **Dawn of the Physics of Complex Plasmas**

## Contamination Control Plasma Processing in Microelecronics





The 90% of the particles that end up on a wafer come about from the plasma (Selwyn, 1990)

Particle suspension in a plasma

## **Complex Plasma**の特徴



### プラズマとダストの相互作用=Complex Plasma

石原修, コンプレックスプラズマの物理、日本物理学会誌 2002年7月号 p. 476

O. Ishihara, Complex Plasma : Dusts in Plasma, J. Phys. D: Appl. Phys. 40, R121 (2007).

# Dust particles move randomly in a low pressure plasma

## Dust particles move like a flow in a medium pressure plasma

# Dust particles form structures in a high pressure plasma



#### 頁に 市電した 微和子は 里力とシース 電場 からの の つり合いでシース端で 浮上する



#### 二つの微粒子がイオン風の中で イオン音波を介してペアを作る

O. Ishihara and S.V. Vladimirov, Physics of Plasmas (1996, 97, 98).

シース中の微粒子の挙動







Particles form a monolayer at the sheath edge above the stainless steel plate. YCOPEX (with Nakamura/Saitou)



Y. Saitou, Y. Nakamura, T. Kamimura, and O. Ishihara, Bow shock formation in a complex plasma, Phys. Rev. Lett. 108, 065004 (2012).





T Kamimura, Y Suga and O. Ishihara Phys. Plasmas 14, 123706 (2007)

#### **Molecular Dynamics Simulation**



T Kamimura and O Ishihara, Phys. Rev. E 85, 016406 (2012) Truell W. Hyde et al., Collective Phenomena in Extended Vertical Chains within Dusty Plasma, ICPP, Stockholm, July 2012. O5.316

## Interaction Energy (dust-electron)



For 
$$a=1 \,\mu\text{m}$$
 and  $|Z_d| = 1000$ ,  $|U_d|_{r \to a} = 1.4 \text{ eV}$ .

## Interaction involving dust particles

O. Ishihara, Inter. Cong. Plasma Physics, Stockholm, 2012 (Invited talk)



## Lord Kelvin Problem (1848) Charged Conducting Sphere and a Nearby Charge



qとQが同符号で、十分に近いところで反発力から引力に変わる

#### **Electrons are attracted to a dust particle**





DESORPTION TIME (Frenkel-Arrhenius parameterization)

| $\tau_{\rm d} = \frac{2\pi\hbar}{\kappa_{\rm t}k_{\rm B}T_{\rm d}} \exp(E_{\rm d}/k_{\rm B}T_{\rm d}),$                                                            | O<br>K |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $\frac{d\sigma_{\rm e}}{dt} = \kappa_{\rm t} I_{\rm e} / S - \sigma_{\rm e} / \tau_d$                                                                              | T<br>E |
| $\frac{d\sigma_{\rm e}}{dt} = 0 \Longrightarrow \sigma_{\rm e} = \kappa_{\rm t} \tau_d I_{\rm e} / S$ $Q = S\sigma_{\rm e}, \ Q = \kappa_{\rm t} \tau_d I_{\rm e}$ | τ      |
|                                                                                                                                                                    |        |

 $\sigma_{e} = \text{surface charge density}$   $\kappa_{t} = \text{Transmission coefficient}$   $T_{d} = \text{Dust temperature}$   $E_{d} = \text{Desorption energy}$   $\tau_{d} = 1.8 \mu s(T_{d} = 300 \text{K}),$   $0.8 \text{ (}T_{d} = 170 \text{K}\text{) for } E_{d} = 0.42 \text{eV}$ 

Ref. H. J. Kreuser and Z. W. Gortel, Physisorption Kinetics (1986).

## Charge : quantum effect (2)

Schrödinger equation EIGENENERGY:  $E - U_d = -\frac{1}{4n^2} \left(\frac{\varepsilon - 1}{2\varepsilon + 3}\right)^2 E_R \exp(2a / \lambda_D)$ DESOPTION ENERGY(n = 1):  $E_d = \frac{1}{4} \left(\frac{\varepsilon - 1}{2\varepsilon + 3}\right)^2 E_R \exp(2a / \lambda_D)$ .

$$Q = Z_{\rm d} e = \kappa_{\rm t} \tau_{\rm d} I_{\rm e}$$
$$I_{\rm e} = -\frac{1}{4} e n_{\rm e} \overline{v}_{\rm e} S \exp(-z)$$

$$z = \frac{\left| Z_{\rm d} \right| e^2}{4\pi\varepsilon_0 a k_{\rm B} T_{\rm e}}$$

$$E_{\rm d} = \frac{1}{4} \left(\frac{\varepsilon - 1}{2\varepsilon + 3}\right)^2 E_{\rm R} \exp(2a / \lambda_{\rm D}).$$

$$z = \sqrt{2\pi} \frac{a\lambda_{\rm dB}}{\lambda_{\rm D}^2} \frac{T_{\rm e}}{T_{\rm d}} \exp(-z + E_{\rm d} / k_{\rm B}T_{\rm d}).$$

 $Z_{\rm d} = -\frac{\pi\hbar}{2L_{\rm d}} n_{\rm e} \overline{v}_{\rm e} S \exp(-z + E_{\rm d} / k_{\rm B} T_{\rm d})$ 

24

## Classical Theory (OML)

$$\exp\left(-z\right) = \sqrt{\frac{m_e T_i}{m_i T_e}} \left(1 + \frac{T_e}{T_i} z\right)$$

QM Theory (desorption)

$$\exp(-z) = \frac{z}{\sqrt{2\pi}} \frac{T_{\rm d}}{T_e} \frac{\lambda_{\rm D}^2}{a\lambda_{\rm dB}} \exp(-E_{\rm d} / k_{\rm B} T_{\rm d})$$



$$E_{\rm d} = \frac{1}{4} \left(\frac{\varepsilon - 1}{2\varepsilon + 3}\right)^2 E_{\rm R} \exp(2a / \lambda_{\rm D}).$$
$$z = \frac{\left|Z_{\rm d}\right| e^2}{4\pi\varepsilon_0 a k_{\rm B} T_{\rm e}}$$

Dust charge as a function of dust temperature. Plasma density  $n_e = 10^{16} \text{ m}^{-3}$ and dust radius  $a = 5 \ \mu \text{m}$  $E_d = 0.2 \text{ eV}.$ 

25

**O.** Ishihara, Plasma Physics and Controlled Fusion, in press (2012)

#### 微粒子のプラズマ中での集団現象 一格子振動

----- ダスト-プラズマ クーロン相互作用



## <u>微粒子のプラズマ中での集団現象</u> — 格子振動 **Longitudinal Mode** $\delta Z_i = \delta Z_0 \exp\left[-i(\omega t - jk\Delta)\right]$ $\left| \left( \delta Z_{j} - \delta Z_{j-n} \right) + \left( \delta Z_{j} - \delta Z_{j+n} \right) \right|$ $= \delta Z_0 e^{ink\Delta} \left[ \left( 1 - e^{-ink\Delta} \right) + \left( 1 - e^{ink\Delta} \right) \right]$ $QE(\mathbf{r}_i)$ $=Q\sum_{n=1}^{\infty} \left[ (\delta Z_{j} - \delta Z_{j-n}) \left( \frac{\partial E}{\partial r} \right)_{n\Delta} - (\delta Z_{j+n} - \delta Z_{j}) \left( \frac{\partial E}{\partial r} \right)_{n\Delta} \right] = \delta Z_{0} e^{ink\Delta} 2 \left[ 1 - \cos(nk\Delta) \right] \\ = \delta Z_{0} e^{ink\Delta} 2 \left[ 2\sin^{2} \left( \frac{nk\Delta}{2} \right) \right]$ $m_d \frac{d^2 \delta Z_j}{dt^2} = Q \sum_{j=n}^{\infty} \left( 2\delta Z_j - \delta Z_{j-n} - \delta Z_{j+n} \right) \left( \frac{\partial E}{\partial r} \right)$ $=4\delta Z_0 e^{ink\Delta} \sin^2\left(\frac{nk\Delta}{2}\right)$

$$\omega^{2} = \frac{8Q^{2}}{4\pi\varepsilon_{0}m_{d}\Delta^{3}}\sum_{n=1}^{\infty} \left(\frac{1}{n^{3}} + \frac{\kappa}{n^{2}} + \frac{\kappa^{2}}{2n}\right)\exp\left(-n\kappa\right)\sin^{2}\left(\frac{nk\Delta}{2}\right)$$

#### Transverse Mode 一不安定



$$E(r_{j,j-n}) \approx E(r_{j,j+n}) \approx E(n\Delta)$$
$$\delta X_{j} = \delta X_{0} exp\left[-i\left(\omega t - jk\Delta\right)\right]$$

$$QE(r_j) = Q\sum_{n=1}^{\infty} \left[ E(r_{j,j-n})\cos\theta_{j-n} - E(r_{j,j+n})\cos\theta_{j+n} \right] = Q\sum_{n=1}^{\infty} \left[ E(r_{j,j-n})\frac{\delta X_j - \delta X_{j-n}}{n\Delta} - E(r_{j,j+n})\frac{\delta X_j - \delta X_{j+n}}{n\Delta} \right]$$

$$QE(r_j) = Q\sum_{n=1}^{\infty} E(n\Delta) \frac{2\delta X_j - \delta X_{j-n} - \delta X_{j+n}}{n\Delta}$$

$$\omega^{2} = -\frac{4Q^{2}}{4\pi\varepsilon_{0}m_{d}\Delta^{3}}\sum_{n=1}^{\infty}\frac{1}{n^{2}}\left(\frac{1}{n}+\kappa\right)\exp\left(-n\kappa\right)\sin^{2}\left(\frac{nk\Delta}{2}\right)$$

#### Transverse Lattice Mode Confined in a Plasma —effect of charge neutrality



Unstable only if the interparticle distance becomes smaller than the critical value.

Linear chain to zig-zag, then to helical structure



30

## **Dispersion Relation**

$$-\omega^{2}\mathbf{1}'\cdot\delta\mathbf{R} = \frac{2}{\Delta^{3}}\sum_{j=1}^{N}\frac{\mathbf{C}_{j}\cdot\delta\mathbf{R}}{D_{j}^{3/2}}$$
$$\delta\mathbf{R} = \begin{pmatrix}\delta\rho\\\varepsilon\delta\phi\\\delta z\end{pmatrix} \qquad \mathbf{1}' = \begin{pmatrix}1-\frac{2}{\omega^{2}} & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{pmatrix}$$

 $C_{j} = \text{Hermitian Matrix}$   $t \ge \lambda \text{ for } t \ge$ 

31

# Dispersion relation for a linear chain $\mathcal{E} = R / \Delta = 0$

Longitudinal case

$$\omega^{2} = \frac{8}{\Delta^{3}} \sum_{j=1}^{N} \frac{\sin^{2} \left( jk\Delta/2 \right)}{j^{3}}$$

Transverse case

$$\omega^{2} = 2 - \frac{4}{\Delta^{3}} \sum_{j=1}^{N} \frac{\sin^{2} \left( jk\Delta/2 \right)}{j^{3}}$$

Linear chain is unstable for transverse modes if  $\omega^2 < 0$ 

$$\Delta < \Delta_{c1} = \left[ \sum_{j=1}^{N} \frac{2\sin^2(jk\Delta/2)}{j^3} \right]^{1/3} \xrightarrow[N \to \infty, k\Delta = \pi]{} \left\{ \frac{7\varsigma(3)}{4} \right\}^{1/3} = 1.28131$$
$$\varsigma(k) = \text{Riemann zeta function}$$

Linear chain transforms into double chains.

# Zig-zag to Helices Set $\delta \rho = \delta z = 0$ $\delta \phi \neq 0$ $\omega^{2} = -\frac{4}{\Lambda^{3}}\sin^{2}\left(\frac{k\Delta}{2}\right) + \frac{2^{4}}{\Lambda^{3}}\sin^{2}\left(\frac{k\Delta}{2}\right) - \frac{2}{\Lambda^{3}}\sin^{2}\left(\frac{k\Delta}{2}\right)\cos^{2}\left(\frac{k\Delta}{2}\right) + \cdots$ $\omega^2 < 0 \text{ if } 3 > 8 \left[ 1 + (2D/\Delta)^2 \right]^{-3/2}$ Substitute $D = \left| -1 + \frac{2^{8/3}}{\left(\Delta^3 - 16S\right)^{2/3}} \right| \frac{\Delta}{2}$ Then $\Delta < [-10+14\varsigma(3)]^{1/3} = 1.897 = \Delta_{c2}$ Zig-zag structure transforms into helical structur T Kamimura and O Ishihara, Physical Review E 85, 016406 (2012)

## **Two dimensional lattices**







square lattice hexagonal lattice

honeycomb lattice



## Interaction Energy

Consider interaction energy of a given dust particle at the origin with all other dust particles in the crystal in the presence of plasma.

$$E_{I} = \text{total interaction energy}$$
$$=E_{I}^{Q} + E_{I}^{b}$$

 $E_I^Q$  = interaction energy between dust particles  $E_I^b$  = interaction energy of the reference dust particle with the neutralizing background



$$E_{I}^{Q} = \frac{Q^{2}}{4\pi\varepsilon_{0}} \lim_{\mathbf{x}\to0} \sum_{\ell} \left( \frac{e^{-|\mathbf{x}-\mathbf{x}(\ell)|/\lambda}}{|\mathbf{x}-\mathbf{x}(\ell)|} - \frac{e^{-|\mathbf{x}|/\lambda}}{|\mathbf{x}|} \right)$$
$$E_{I}^{b} = Q \int \frac{\rho_{Q}}{4\pi\varepsilon_{0}} \frac{e^{-|\mathbf{x}|/\lambda}}{4\pi\varepsilon_{0}} d^{2}x = -\frac{Q^{2}}{4\pi\varepsilon_{0}} 2\pi\lambda$$
Background charge density  $\rho_{Q} = -\frac{Q}{a_{c}}$ 

## Variation of Potential Energy

$$\begin{split} & \int \mathbf{x}(\ell) & \mathbf{x}_{\ell\ell'} = \mathbf{x}(\ell) - \mathbf{x}(\ell') \\ & \mathbf{x}_{\ell\ell'} = \delta \mathbf{x}(\ell) - \delta \mathbf{x}(\ell') \\ & \delta \mathbf{x}_{\ell\ell'} = \delta \mathbf{x}(\ell) - \delta \mathbf{x}(\ell') \\ & \int \mathbf{x}_{\ell\ell'} & \Phi = \frac{1}{2} \frac{Q^2}{4\pi\varepsilon_0} \sum_{\ell,\ell'} \frac{e^{-([\mathbf{x}(\ell) + \delta \mathbf{x}(\ell)] - [\mathbf{x}(\ell') + \delta \mathbf{x}(\ell')])/\lambda}}{[\mathbf{x}(\ell) + \delta \mathbf{x}(\ell)] - [\mathbf{x}(\ell') + \delta \mathbf{x}(\ell')]} \\ & \Phi = \frac{1}{2} \frac{Q^2}{4\pi\varepsilon_0} \sum_{\ell,\ell'} \frac{e^{-|\mathbf{x}_{\ell\ell'} + \delta \mathbf{x}_{\ell\ell'}|/\lambda}}{|\mathbf{x}_{\ell\ell'} + \delta \mathbf{x}_{\ell\ell'}|} \\ & = \frac{1}{2} \frac{Q^2}{4\pi\varepsilon_0} \sum_{\ell,\ell'} \left[ \frac{e^{-|\mathbf{x}_{\ell\ell'}|/\lambda}}{|\mathbf{x}_{\ell\ell'}|} + \delta \mathbf{x}_{\ell\ell'} \cdot \frac{d}{d\mathbf{x}_{\ell\ell'}} \left( \frac{e^{-|\mathbf{x}_{\ell\ell'}|/\lambda}}{|\mathbf{x}_{\ell\ell'}|} \right) \right. \\ & \left. + \frac{1}{2} \left( \delta \mathbf{x}_{\ell\ell'} \cdot \frac{d}{d\mathbf{x}_{\ell\ell'}} \right)^2 \left( \frac{e^{-|\mathbf{x}_{\ell\ell'}|/\lambda}}{|\mathbf{x}_{\ell\ell'}|} + \cdots \right] \end{split}$$

## Dispersion Relation for hexagonal lattice



For 
$$\kappa >> 1$$
  

$$\frac{\omega}{k} = \sqrt{\frac{4\sqrt{2}\pi^2}{3^{3/4}}} \sqrt{\frac{2Q^2}{4\pi\varepsilon_0 m_d \Delta}} \kappa^{-5/2} e^{-\sqrt{3}\kappa^2/8\pi}$$

$$= 4.95C_s \kappa^{-5/2} e^{-\sqrt{3}\kappa^2/8\pi}$$

$$\kappa = \frac{\Delta}{\lambda_D} \qquad C_s = \sqrt{\frac{2Q^2}{4\pi\varepsilon_0 m_d \Delta}}$$

O. Ishihara, Plasma Physics and Controlled Fusion (2012)

## SUMMARY

1. コンプレックスプラズマの実験的側面

微粒子が作る気体、液体、固体状態 プラズマの集団運動を介した微粒子間相互作用

2. 微粒子が形成する構造

バウショック

MEC (Minimum Energy Configuration)

3. 微粒子の帯電過程

鏡像·分極効果,吸着、脫離、量子効果

4. コンプレックスプラズマ中の低次元集団運動

# **Complex Plasma**

#### an emerging field

END