26pYG-7

ミラー磁場配位中のICRF加熱と 高エネルギーイオンの振舞

筑波大学 数理物質系 物理工学域 市村 真 (プラズマ研究センター)

日本物理学会第67回年次大会 平成24年3月26日 関西学院大学

内容

- 1. ICRF waves in GAMMA 10
- 2. Spontaneously Excited Waves in High Temperature Plasmas
- 3. Wave-Wave Interactions
- 4. Wave-Particle Interactions

GAMMA 10 Tandem Mirror

/26

6

ICRF Waves in GAMMA 10

- •MHD Stabilization
- •Plasma Production
- •Ion Heating

Photograph inside Vacuum Chamber of Central Cell

JPS2011

Production of Main Plasmas in the Central Cell

低密度プラズマ(10¹⁸m⁻³台) → ICRF波動の波長が装置長と同程度 → 固有モードの形成 密度上昇とともに径方向の高次モードの励起 → 磁力線方向の固有モード形成時に強く励起

Analysis by finite element method (FEM) (developed by Prof. Fukuyama, Kyoto Univ.)

Eigenmode Formation in the Central Cell

Observation of Eigenmode Formation

Interaction between East and West RF1 Antennas

東西同一周波数 → 強く結合し互いに干渉する → 密度変化に波動励起が強く依存する 東西異なる周波数 → 密度変化によらない東西対称な波動励起

Ion Heating

JPS2011

Spontaneously Excited AIC waves

AIC-wave excitation in Space Plasma

JPS2011

<u>Wave-Wave and Wave-Particle Interactions</u> 波動間の相互作用 ・アルベン速波から遅波、また、遅波から速波へのモード変換

・印加ICRF波動、励起ICRF波動間の結合と分岐

セントラル部で励起されたアルベン速波がアンカー部に伝搬する過程で遅波にモード変換し、アンカー部を加熱する。
セントラル部とアンカー部の中間部
→ 円形から楕円形へ遷移
→ m = ±2の変形 m = +1の速波から m = +1 ± 2 = -1 (+3)の遅波へ変換

アンカー部で励起されたAIC波動(遅波)がセントラ ル部中央付近に(速波として)伝搬することを確認。

Parametric Decay of ICRF waves

加熱ICRFとAIC波動との差周波数を持つ 低周波数揺動の観測

100

110

time [ms]

22

1000

n

0.2

150

120 130 140

Wave-Particle Interaction

Pitch angle scattering due to AIC-mode

反磁性量の増大に伴ってccHED信号が増大

- → 反磁性量がピークに達する前に減少を始める (AIC強度が増大)
- → eeHED信号強度が増大

ccHEDによるピッチ角測定により 垂直方向から磁力線方向への 連続的な変化を確認

Summary

- 1. ICRF waves in GAMMA 10
- 2. Spontaneously Excited Waves in High Temperature Plasmas
- 3. Wave-Wave Interactions
- 4. Wave-Particle Interactions
- 1. 軸対称、非軸対称ミラー磁場配位中でのICRF波動の外部励起に関 する実験的研究(プラズマ生成・加熱の観点)
- 2. 磁気圏プラズマにも共通する温度非等方性に起因する自発励起 AIC波動の実験的研究
- 3. 励起波動間の結合・分岐に関して、磁気プローブに加えてマイクロ波 反射計を用いたプラズマ内部計測
- 3. 波動と粒子間の相互作用に関して、サイクロトロン加熱で磁力線に 直角方向に加熱されたイオンの磁力線方向へのピッチ角散乱 (磁力線に沿った方向へのイオンの輸送に関して、定量的な評価)