


An analytical description of high β_p equilibrium with Negative Triangularity in QUEST [Kishore Mishra]

- □ In QUEST spherical tokamak, negative triangular plasma equilibrium is self organized, naturally at high $\beta_p(\varepsilon\beta_p \sim 1)$ during ECRH injection in Ohmic plasma at fixed plasma current.
- \square As β_p is increased, plasma shape becomes more negatively triangular with formation of a natural poloidal field null at the high field side (IPN plasma).
- \square No external shaping coils are used to enhance the negative triangularity (δ).
- ☐ A simple analytical solution of Grad-Shafranov equation is used to investigate such equilibrium.
- ☐ The model is in agreement with the experimental results that
 - ightharpoonup At a critical β_p^* ($\beta_p + l/2$) ~ 3, IPN configuration is formed ($R_{in} > 0.22$ m)
 - \triangleright With decrease in δ , β_p^* increases.
 - ➤ Negative triangularity is a new feature of plasma self organization near equilibrium

Variation of β_p^* with R_{in} , triangularity (δ) and triangularity parameter (T in model) for EC heated Ohmic plasma in QUEST

Natural transition of equilibrium at high β_p in EC heated Ohmic discharge