日本物理学会第73回年次大会若手奨励賞受賞記念講演 東京理科大学, 2018.3.23

23pK601-3

直線型磁化プラズマ中電子温度勾配モード の非線形ダイナミクス

Nonlinear Dynamic of Electron Temperature Gradient Mode in Linear Magnetized Plasmas

マックス・プランクプラズマ物理学研究所

文贊鎬 (Moon, Chanho)

畠山 カ三, 金子 俊郎, 伊藤 公孝, 伊藤 早苗, 居田 克己, 稲垣 滋

東北大学大学院工学研究科,九州大学 応用力学研究所,核融合科学研究所の スタップの皆様

研究背景と目的

4) S. K. Mattoo et al., Phys. Rev. Lett. 108 (2012) 255007.

異常熱輸送 ーイオンスケールー

プラズマ空間勾配駆動

- Drift wave (DW) mode¹⁾
- Flute mode²⁾
- Ion temperature gradient (ITG) mode³⁾

異常電子熱輸送

電子温度勾配モード Electron Temperature Gradient (ETG) Mode⁴⁾

電子熱輸送 ~ イオン熱輸送 $(\chi_i ~ \chi_e)$

ETG及び垂直電場 (E_r)の形成と制御 ETGモードの励起・抑制機構の解明

実験装置図及び電子温度勾配の制御と形成

高・低周波揺動のETG依存性

非線形結合が助長され、エネルギーが移送される.

スラブETGモード及びDWモードの分散関係

$$\begin{array}{l} & - \mbox{k}\mbo$$

プラズマ揺動間のエネルギー移送

6) S.-I. Itoh and K. Itoh, Plasma Phys. Control. Fusion 43, 1055 (2001).

ETGモードに対するE×Bシアの効果

Q_T Upgrade Machine at Tohoku University

C. Moon et al., Rev. Sci. Instrum. 81, 053506 (2010).

垂直電場(E_r)の形成と制御

E_r によるETGモードとDWモードの非線形相互作用 11

 $P_{\mu} = 20 \text{ W}, V_{g1} = -10 \text{ V}, V_{g2} = -30 \text{ V}, V_{ee2} = -1.5 \text{ V}, r = -0.9 \text{ cm}$

ECRプラズマの高温電子と低温の熱電子を用いて、電子温度勾配(ETG)形成・ 制御することで観測される高・低周波揺動に対する非線形相互作用及びETGモ ードの抑制機構を詳細に調べた結果、以下のことが分かった.

- ETG強度が閾値を超えることで、このETGモードのエネルギー が非線形相互作用によって、ドリフト波モードやフルートモードな どの低周波揺動に移送されることを世界で初めて明らかにした.
- ETGモードに垂直電場を制御して印加することで,弱い垂直電場でも,径方向内向きの電場の場合には,ETGモードとドリフト波モードとの非線形結合が助長され,エネルギーが移送されることに伴いETGモード強度が減少するという新たなETGモードの抑制機構を解明した.

ご清聴ありがとうございます。