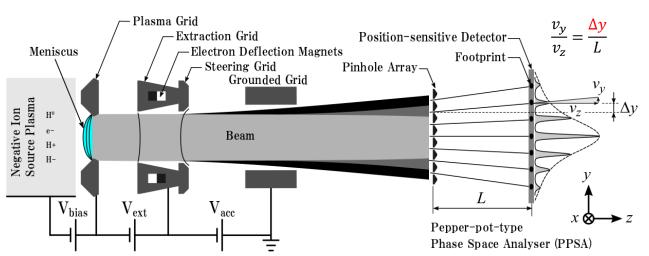
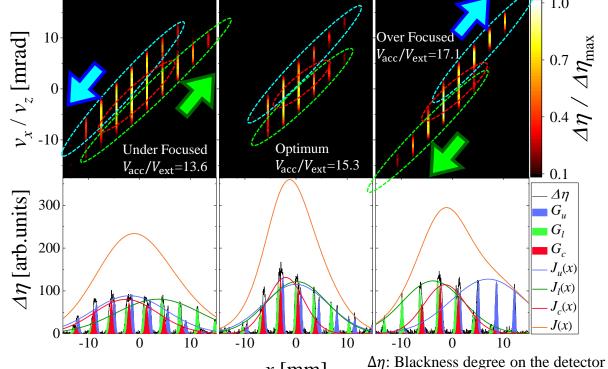
プラズマ加熱用負イオンビーム位相空間構造に基づくビーム光学評価


Evaluation of beam optical properties based on phase space structure of negative ion beams for plasma heating <u>Y.Haba</u>¹, K. Nagaoka^{2,1}, K. Tsumori^{2,3}, M. Kisaki², H. Nakano^{2,3}, K. Ikeda², M. Osakabe^{2,3}


¹⁾ Graduate School of Science, Nagoya University, ²⁾ National Institute for Fusion Science, ³⁾ SOKENDAI

Well-focused beam is required for ITER (3-7 mad with RF negative ion source). \rightarrow Achievement: 17-35 mrad with RF, ~5 mrad with filament-arc negative ion source

Beam focusing of negative ions are affected by two electrostatic-lens effects. One is the plasma meniscus, which is described as the perveance $\propto n_{\rm H^-}/V_{\rm ext}^{1.5}$, where $n_{\rm H^-}$ and $V_{\rm ext}$ refer the negative ion density and the extraction voltage, respectively. The other is the subsequent lens, which can be controlled by the voltage ratio of $V_{\rm acc}/V_{\rm ext}$, where $V_{\rm acc}$ is the acceleration voltage.

We focus on the phase space structure of a single negative ion beamlet to understand the negative ion beam focusing. The phase space structure measurements of the beamlet produced by a filament-arc-type negative ion source (NIFS-RNIS) have been performed by scanning $V_{\rm acc}/V_{\rm ext}$ with fixed perveance (fixed $n_{\rm H^-}$ and $V_{\rm ext}$).

x [mm] Diackness degree on the detector The beamlet consisting three-Gaussian components is identified in the *x*-direction. The two components, which are shown with dashed lines in blue and green, move in the opposite direction by changing V_{acc}/V_{ext} .

The standard deviation of the axis-positions of three components (δ) is a key parameter to characterize the focusing of the negative ion beamlet.

$$\delta = \left[\sum_{i} (x_i - \bar{x})^2 \alpha_i\right]^{1/2} / \sigma_x \quad \text{with} \quad \bar{x} = \sum_{i} x_i \alpha_i$$

 x_i : Position of each component

- \bar{x} : Position of beamlet center
- α_i : Normalized current

 σ_x : Beamlet width