
Evaluation of saturated absorption condition of hydrogen Balmeralpha line due to laser pumping

J.J. Simons^A and M. Goto^{A,B}

^ADept. of Fusion Science, SOKENDAI, ^BNational Institute of Fusion Science

- Saturated Absorption Spectroscopy is an experimental technique developed to overcome the doppler broadening effect in thermally excited mediums.
 - Two-laser system where higher intensity laser pumps electrons from a single level into higher energy states, while lower intensity laser probes the remaining electrons in lower level.
 - Lasers tuned so particles only interact with both lasers at transition frequencies involving probed energy level. Absorption of the probe laser dips only at a transition frequency.
 - Data showcases absorption spectra of fine structure transitions involving n=2 and n=3 Hydrogen energy levels.
- **Collisional-Radiative Model** of Hydrogen describes particle movement between energy levels.
 - Resultant particle population densities from model used to simulate absorption conditions of each transition independently, which are then added via superposition.
- **Discrepancy between experimental and theoretical values** at transition frequencies possibly due to lowerlevel particle saturation via momentum transfer collisions not accounted for in CR model 'filling in' lamb dips in experimental data.

