2004.3.28 物理学会シンポジウム

磁気プラズマセイル の可能性と 深宇宙探査への挑戦

宇宙航空研究開発機構 船木一幸

Spacecraft Propulsion Using Solar Energy

Solar Sail

Thrust production by light pressure

Magnetic Sail

Thrust production by the solar wind dynamic pressure

1.磁気セイルとは? プラズマセイルとは?

発表の構成

- 1. 磁気セイルとは? プラズマセイル(MPS)とは??
- 2. MPSの推力発生メカニズムの解析
 - 太陽風から磁場への運動量移動
 - 磁場Inflation
- 3. 今後の課題とまとめ

なお、本発表はJAXA/MPS研究会での検討に基づくものである。 研究会のメンバー(山川 宏、小川博之、藤田和央、野中 聡 、國中 均、大津広敬、中山宜典、中島秀紀 の各先生および学 生さん達)に感謝します。

Original Idea of Magsail

Proposal by Zubrin (JBIS, 1993)

- Solar Wind Dynamic Pressure ~ Magnetic Field of nT
- B-field by superconducting coil of 5mm diameter
- Current Density 10¹⁰A/m² (difficult to construct/deploy)

太陽風を構成するイオンが、磁場で反射され、その反力が宇宙機の推力に。

Magsail with Plasma Jet (Magneto Plasma Sail, MPS)

Mini-Magnetospheric Plasma Propulsion (M2P2) Proposed by R.M. Winglee, JGR, 2000

Original Small B-field

Inflated B-field by Plasma Jet
Large interaction area
-> Large thrust

気球(風船)の原理と磁気プラズマセイル(MPS)のアナロジー

MPS の太陽風 に相当

MPSの磁場 に相当 気球を膨らませる →プラズマ噴射で磁場 を拡げる

横風で移動
→太陽風を受けてMPS
が移動
外部のエネルギー(太陽エネルギ)の利用

Comparison of MPS with EP

Specific Impulse, sec

MPS(磁気プラズマセイル)の研究状況

アメリカワシントン大学のWingleeらが研究を進めているが、MPSの基本原理および性能(推力電力比)の評価は不十分

当面の研究目的

- 1. 数値解析による性能評価
 - 1. 太陽風と磁場との相互干渉を数値解析し、推力発生スケー リングを確認する。
 - 2. 磁場Inflation現象を数値解析し、その可能性について評価する。
 - 3. 1、2の結果および簡易モデルを用いてMPSの推力電力 比を計算する。
- 2. 地上実験(シミュレーターを構築中)

2. MPS(磁気プラズマセイル)の推力発生メカニズムの解析

2.1 磁場が受ける力の解析

~数値解析モデル~ (太陽風と磁場との相互干渉)

~計算結果 (密度・磁場分布)~

太陽風プラズマ流の密度分布と磁場分布

~抗力係数の導出~

太陽風=超音速プラズマ流

磁場が抵抗(造波抵抗+圧力抵抗)を受ける

抗力係数の計算手法

コントロールボリュームの運動量収支=磁場が受ける力(抗力D) 抗力係数 $C_D = \frac{D}{(-1)^2/2\sqrt{c}}$

物体半径と抗力係数の関係

2. MPSの推力発生メカニズムの解析

2.2 磁場インフレーションの限界予測

2D-MHD Simulation of Magnetic Field Inflation

r-θ Calculation Region

Initial Conditions

Numerical Result: Plasma Flowfield

obtained by resistive MHD code (NIRVANA)

Numerical Result:

Magnetic Field Inflation by Plasma Injection

 $B_{in}=0.02T$ (200Gauss), $p_{in}=1.3$ Pa, $T_{in}=3$ eV, sonic inlet

Magnetic Flux Density
(without Plasma Injection, t=0)

Magnetic Flux Density
(with Plasma Injection, t=2.2e-04 s)

Summary of Numerical Result:

Inflated Magnetic Field

results are obtained.

3.まとめと今後の課題

Research Topics remains

- 1 推力発生機構の詳細な理論解析
 - (投入パワ、推進剤流量、磁気回路への依存性)
 - 推力電力比の最適化
 - ・ 推力方向制御の方法
- 2. 地上デモンストレーション 推力測定までの地上実験実施(シミュレータの構築) が不可欠。
 - ・チャンバー壁の影響のため、定常地上実験は不可能か。非定常 (パルス)実験により原理検証ができるのか。
 - ・実用には高密度プラズマ源が必要。
 - ・プラズマの不安定性(プラズマ加熱)などのプロセスを把握。 (詳細な数値解析の必要性)
- 3. 航法側から
 - ・太陽風の乱れの補正方法
 - ・ 推力方向の制御
 - 目的天体到達後の減速

今後の課題・研究計画

物理過程の解明と性能評価 磁気インフレーション、太陽風磁場干渉解析 H16年度 • 素過程の実験検証 ・性能、ミッション計算 • MPSの統合(大規模)解析 地上シミュレータの構築 H17年度 システム検討 MPS実現可能性の判断 工学実験衛星への展開 H18年度 以降